| 授業科目 |
担当教員 |
開講期 |
数値計算
(Numerical Analyses)
|
(前期)田中 大二郎・(後期)栗原 義武
|
通年
|
| 科目番号 |
対象学年 |
必修・選択の別 |
単位数 |
|
13350
|
4年 電子制御工学科
|
必履修
|
2単位
|
授業目標 数値計算における根本的な誤差問題について認識するとともに、 数値計算の各解法についてのアルゴリズムを理解し、 プログラム演習により実際に確認し、理解を深めることを目標とする。
|
- 教科書
- 数値計算法(第2版) 小沢一文 著 (共立出版)
-
- 参考書
- C言語によるアルゴリズム事典 奥村晴彦 著 (技術評論社) など
-
|
授業の進め方 講義で説明を行なうと同時に、演習時間を設け、実際にC言語やC++を用いて演習を行う。
|
授業内容
|
前期 |
|
後期 |
| 1 |
最小2乗法
|
1 |
ラグランジュ補間
|
| 2 |
最小2乗法プログラミング演習
|
2 |
ラグランジュ補間プログラミング演習
|
| 3 |
丸め誤差、固定・浮動小数点表示
|
3 |
ニュートンの補間
|
| 4 |
桁落ちと情報落ち
|
4 |
ニュートンの補間プログラミング演習
|
| 5 |
連立一次方程式の解法(ガウスの消去法)
|
5 |
チェビシェフ補間
|
| 6 |
LU分解法,プログラミング演習
|
6 |
チェビシェフ補間プログラミング演習
|
| 7 |
ガウスザイデル法
|
7 |
プログラム演習のまとめ
|
| 8 |
前期中間試験
|
8 |
後期中間試験
|
| 9 |
非線形方程式の解法、2分法、不動点反復法
|
9 |
数値積分法(長方形近似、台形近似)
|
| 10 |
非線形方程式の解法、ニュートン法と二次収束
|
10 |
シンプソン公式
|
| 11 |
割線法,2分法ニュートン法プログラミング演習
|
11 |
数値積分プログラミング演習
|
| 12 |
代数方程式の解法、組み立て除法とニュートン法
|
12 |
常微分方程式、オイラー法
|
| 13 |
代数方程式の解法、ニュートン法、DK法,プログラミング演習
|
13 |
改良オイラー法、修正オイラー法
|
| 14 |
代数方程式の解法、DK法
|
14 |
ルンゲクッタ法
|
| 15 |
前期末試験
|
15 |
学年末試験
|
|
成績評価の方法 定期試験:70%、課題演習問題:30% |
学生へのメッセージ 本科目を受けるにあたって、1年から3年までの情報処理の内容をよく理解して、C言語による基本的なプログラミングが習得できていることが条件である。 プログラムの実行結果を鵜呑みにするのではなく、問題と照らし合わせて、結果が妥当かどうか自分で考えて判断するようにしましょう。
|
| 学習・教育目標(デザイン工学) |
B |
学習・教育目標(生物応用化学) |
|